INDEX

A
agrichemical mixing centers (702, 703), 207
air quality effects
agrichemical mixing centers (702, 703), 207
alley cropping (311), 207
anionic polyacrylamide (PAM) erosion control (450), 44, 207–208
bedding (310), 208
conservation buffers, 48
conservation covers (327), 64
correction crop rotation (328), 31
constructed wetlands (656), 208
contour buffer strips (332), 208
contour farming (330), 208
contour orchard (331), 208
cover crops (340), 209
cropland conversion, 64
deep tillage (324), 210
drainage water management (554), 210
filter strips (393), 211
grazed waterways (412), 211
hedgerow planting (442), 209–210
herbaceous wind barriers (603), 209–210
irrigation land leveling (464), 213
irrigation tailwater recovery (447), 213–214
irrigation water management (449), 214
mulching (484), 214
nutrient management (590), 215
ponds (378), 215
precision land forming (462), 213
residue management, 29, 215–218
riparian forest buffers (391), 218, 277
row arrangements (557), 219
saline and sodic soil management (610), 48
seasonal residue management (344), 215–218
sediment basins (350), 220
stripcropping (585), 209, 220
subsurface drainage (606), 220
surface roughening (609), 221
terraces (600), 221
tree/shrub establishment (612), 273–275
water management practices, 122
wetland creation (658), 208
wetland enhancement (659), 208
wetland restoration (657), 208
windbreak/shelterbelt establishment (380), 209–210
windbreak/shelterbelt renovation (650), 209–210
alley cropping (311)
air quality effects, 57
definition, 49
environmental outcomes, 57–58
for pesticide mitigation, 207
scientific documentation, 58–59
soil quality effects, 55–57
water conservation effects, 57
water quality effects, 49–55
Amherst Matrix, 238–242
anionic polyacrylamide (PAM) erosion control (450)
air quality effects, 44
definition, 136
environmental outcomes, 44
in irrigated agriculture, 142
for pesticide mitigation, 207–208
scientific documentation, 44
soil management practice, 42–44
soil quality effects, 42–44
water conservation effects, 44
water quality effects, 42–44
application decisions
categories of, 153
fertilizers, 173–175
manure amendments, 175–179
sound policy for, 179–180
tradeoffs, 180–181
atmospheric transport, 222–223
B
Bear Creek watershed case study, 300–302
bedding (310) for pesticide mitigation, 208
biological controls, 205, 253
brush management (314) for pesticide mitigation, 207
buffer areas, environmental outcomes of, 170–171
buffer strips, see contour buffer strips (332)
C
carbon
residue management effect, 15–20
sequestration, 142
case studies, landscape management, 293–305
channel bank vegetation (322), 289–291
channel stabilization (584), 288–290
chemigation, 138
conservation buffers
air quality effects, 57
environmental outcomes, 57–58
for pesticide risk mitigation, 250–251
scientific documentation, 58–59
sediment transport, 49
soil management practice, 48–59
soil quality effects, 55–57
water conservation effects, 57
water quality effects, 49–55
conservation cover (327)
air quality effects, 67
environmental outcomes, 67–68
for pesticide mitigation, 206
scientific documentation, 68
soil management practice, 64–68
soil quality effects, 66–67
water conservation effects, 67
water quality effects, 64–66
conservation crop rotation (328)
air quality effects, 35
environmental outcomes, 35
for pesticide mitigation, 207
scientific documentation, 35
soil management practice, 31–35
soil quality effects, 31–34
water conservation effects, 34–35
water quality effects, 31–34
conservation practices for pesticide mitigation, 206–221
Conservation Reserve Program (CRP), 64–66
conservation tillage. see residue management
constructed wetlands (656)
landscape management practice, 285–288
for pesticide mitigation, 208
contour buffer strips (332)
air quality effects, 57
definition, 48
environmental outcomes, 57–58
for pesticide mitigation, 208–209
scientific documentation, 58–59
soil quality effects, 55–57
water conservation effects, 57
water quality effects, 49–55
contour farming (330)
for pesticide mitigation, 208–209
soil management practice, 63–64
contour orchard (331)
for pesticide mitigation, 208–209
soil management practice, 64
contour stripcropping. see stripcropping (585)
corn
IPM for, 257
low phytate, 161
corridor connectivity, 276–277
cotton, IPM for, 256–257
cover crops (340)
environmental outcomes, 40–41
for pesticide mitigation, 209
scientific documentation, 41–42
soil management practice, 35–42
soil quality effect, 37–39
water conservation effects, 39–40
water quality effects, 37
crop rotation
see also conservation crop rotation (328)
environmental outcomes, 166–167
as part of IPM, 253
cropland conversion
air quality effects, 67
environmental outcomes, 67–68
scientific documentation, 68
soil management practice, 64–68
soil quality effects, 66–67
water conservation effects, 67
water quality effects, 64–66
crops
residue management effect on yields, 21–22
resistant varieties, 253
row crops and IPM, 254–260
selection for manure application, 178
cross-wind ridges (589A) for pesticide mitigation, 209–210
cross-wind stripcropping (589B) for pesticide mitigation, 209–210
cross-wind trap strips (589C)
for pesticide mitigation, 209–210
wind erosion control practice, 62–63
CRP (Conservation Reserve Program), 64–66
cultural controls
as part of IPM, 253–254
pest management practice, 205
D
dams (402), 291–292
deep tillage (324)
definition, 4
for pesticide mitigation, 210
residue management practice, 26–31
dikes (356) for pesticide mitigation, 206
ditches. see hillside ditches (423)
diversions (362)
environmental effects, 92
for pesticide mitigation, 206
water management practice, 100–101
water quality effects, 101
drainage water management (554)
for pesticide mitigation, 210–211
water conservation effects, 113–116
water management practice, 112–116
water quality effects, 113–116
drains. see subsurface drains (606); surface drains (607, 608)
drift
pesticide, 203-204
spray, 198
E
early succession habitat management (647), 275
economics
driving factor in environmental outcome, 30
of IPM, 261–262
of pesticide use, 254
environmental outcomes
anionic polyacrylamide (PAM) erosion control (450), 43
conservation buffers, 57–58
conservation covers (327), 67–68
conservation crop rotation (328), 35
cover crops (340), 40, 40–41
cropland conversion, 67–68
IPM, 261–262
irrigation water management (449), 139–142
landscape management practices, 305–308
nutrient management (590), 151–154, 166–172
of pesticide use, 197–198
residue management practices, 29–31
saline and sodic soil management (610), 48
enzymes in feed, 161
erosion control, 42–44, 59–63
see also anionic polyacrylamide (PAM) erosion control (450)
ethanol industry, 161–162
eutrophication, 153–154

F
farm-gate decisions
livestock selection, 162
nutrient balance, 152, 155–156
nutrient management (590), 159–162
farming, contour (330)
for pesticide mitigation, 208–209
soil management practice, 63–64
feed management (592)
enzymes, 161
high-P feed from ethanol industry, 161–162
low phytate corn, 161
nutritional requirements, 160
fertilizers, commercial, 173–175
field borders (386)
air quality effects, 57
definition, 49
environmental outcomes, 57–58
for pesticide mitigation, 206
scientific documentation, 58–59
soil quality effects, 55–57
water conservation effects, 57
water quality effects, 49–55
filter strips (393)
air quality effects, 57
definition, 49
environmental outcomes, 57–58
for pesticide mitigation, 211
scientific documentation, 58–59
soil quality effects, 55–57
water conservation effects, 57, 104–106
water management practice, 103–106
water quality effects, 49–55, 101
floodwater diversion (400) for pesticide mitigation, 206
forage harvest management (666) for pesticide mitigation, 206

G
genetic engineering as part of IPM, 254–255
Goodwin Creek watershed case study, 293–297
grade stabilization structures (410)
for pesticide mitigation, 206
water conservation effects, 107
water management practice, 106–107
water quality effects, 107
grassed waterways (412)
for pesticide mitigation, 211–213
water conservation effects, 102–103
water management practice, 101–103
water quality effects, 102–103
grazing land mechanical treatment (548) for pesticide mitigation, 206
grazing, prescribed (528A) for pesticide mitigation, 207
ground water depth, environmental concerns of, 168–169

H
habitat management
disturbance, 275
ecosystem management, 275
early succession (647), 275
restoration/management of declining (643), 275
stream improvement/management (395), 275
upland wildlife (645), 275
wetland wildlife (644), 275
hay and pasture planting (512) for pesticide mitigation, 207
hedgerow planting (442) for pesticide mitigation, 209–210
herbaceous wind barriers (603)
for pesticide mitigation, 209–210
wind erosion control practice, 59–60
hillside ditches (423)
for pesticide mitigation, 206
water management practice, 100
water quality effects, 101
hydrological conservation, 133–134

I
impoundments, 222
in-stream practices, 288–293
infiltration, increasing, 119–122
integrated pest management (IPM)
development of a paradigm, 245–246
economics vs environment, 261–262
environmental impacts, 260
implementation, 252–253
management thresholds, 202
national program, 246–247
research priorities, 262
for row crops, 253–259
trends in, 260–261
inter-row damming (640)
water conservation effects, 119–122
water management practice, 119–122
water quality effects, 119–122
interactions and tradeoffs
landscape management practices, 308–309
nutrient management (590), 180–181
pesticide management practices, 221–222
residue management practices, 68
water management practices, 124
IPM. see integrated pest management (IPM)
irrigation efficiency, 133
irrigation land leveling (464)
for pesticide mitigation, 213
water management practice, 135–137
irrigation pipelines (430), 135, 136
irrigation pumps (533), 134–135
irrigation regulating reservoirs (552), 134
irrigation storage reservoirs (436), 134–135
irrigation tailwater recovery (447)
for pesticide mitigation, 213–214
water management practice, 135–137
irrigation water delivery systems, 134
irrigation land leveling (464), 136–137
irrigation pipelines (430), 135, 136
irrigation regulating reservoirs (552), 134
irrigation storage reservoirs (436), 134–135
open-channel conveyances (582), 135
pond linings (521), 134
pressurized, 137–138
pumping plants (533), 134–135
surface and subsurface (443), 135–137
tailwater recovery (447), 135–137, 213
irrigation water management (449)
categories of, 133–134
irrigation-induced soil erosion, 141–142
leaching losses, 140–141
for nutrient management, 153
overview, 138–139
for pesticide mitigation, 206, 214
saline soil management (610), 139–140
soil quality effects, 142

L
land forming, precision. see precision land forming (462)
land leveling. see irrigation land leveling (464)
land smoothing (466)
for pesticide mitigation, 206
water conservation effects, 118
water management practice, 118–119
water quality effects, 119
landscape management practices
case studies, 293–305
environmental outcomes, 305–308
in-stream, 288–293
overview, 272–273
research priorities, 308–309
riparian, 277–283
terrestrial ecosystem restoration, 273–277
tradeoffs, 308–309
wetlands, 283–288
leaching
fraction, 139
irrigation water management (449), 138–139
pesticide pollution pathway, 198
potential, 168–169
lined waterways (468)
water conservation effects, 102–103
water management practice, 101–103
water quality effects, 102–103
Little River watershed case study, 302–303
livestock selection, 162

M
manure amendments, 175–179
micro-irrigation systems (441)
definition, 138
for pesticide mitigation, 206
water management practice, 138
Mitigation Effectiveness Guide, 200–201
modeling for pesticide management, 223
mole drains (482)
for pesticide mitigation, 206
water conservation effects, 108–112
water management practice, 108–112
water quality effects, 108–112
mulch-till (329B), 4
mulching (484)
definition, 5–6
for pesticide mitigation, 214–215
soil management practice, 24–26
N
National Pesticide Risk Analysis (NAPRA), 200
nitrogen
see also nutrient management (590)
budget, 157
fate of, 157–159
fertilizers, 173, 174, 175
leaching, 140–141
nitrate leaching, 140–141
soil testing, 163
no-till (329A), 4
nonpoint source pollution, 153
nutrient balance
farm-gate, 152, 155–156
regional, 156–157
removal versus inputs, 164–166
state wide, 156
nutrient management (590)
see also application decisions
categories of, 152–153
environmental outcomes, 151–154, 166–172
evolution of, 154–157
farm-gate decisions, 159–162
feed management (592), 160–162
nutrients as surrogates for pesticides, 223
for pesticide mitigation, 215
planning process, 181–185
principles of, 151
research priorities, 184–185
site-specific, 172–173
soil/plant assessment and management, 163–164
sound policy for, 179–180
tradeoffs, 180–181
O
open-channel conveyances (582), 135
orchard, contour (331)
for pesticide mitigation, 208–209
soil management practice, 63–64
overland flow reduction, 92–117
P
PAM. see anionic polyacrylamide (PAM)
erosion control (450)
pasture and hay planting (512) for pesticide mitigation, 207
permanent vegetation, 168
pest management (595)
interactions and tradeoffs, 221–222
overview, 197
research priorities, 222–223
tools for, 200
pest populations, monitoring, 252–253
pesticide mitigation
by conservation practice, 206–221
effectiveness guide, 200–201, 238–242
management techniques, 201–206
regulatory context, 199–200
risk reduction practices, 248–252
pesticides
alternative, 205
application rates, 202, 206, 256–257
drift, 198, 204
economic thresholds for use, 254
environmental concerns, 197–198
formulation and adjuvants, 201–202, 206, 223
label requirements, 202, 206
nutrients as surrogates, 223
partial treatment, 202
pollution pathways, 198–199
reductions in use, 251
setbacks, 202–203, 205, 206
soil incorporation, 203–204, 206
timing of application, 201, 206
phosphorus
see also nutrient management (590)
budget, 157
fate of, 157–159
fertilizers, 173, 175
high-P feed from ethanol industry, 161–162
soil testing, 163–164
pipelines, irrigation (430), 135, 136
plant/soil testing, 163–164
pollutants, 23–24
pond linings (521), 134
ponds (378)
landscape management practice, 290–291
for pesticide mitigation, 215
precision land forming (462)
for pesticide mitigation, 206, 213
water conservation effects, 119
water management practice, 118–119
water quality effects, 119
prescribed burning (338) for pesticide mitigation, 207
prescribed grazing (528A) for pesticide mitigation, 207
pumping plants (533), 134–135
rainfed water management practices, see water management practices
range planting (550) for pesticide mitigation, 207
recreational area improvement (562) for pesticide mitigation, 206
research priorities
IPM, 262
irrigation water management (449), 143
landscape management, 308–309
nutrient management (590), 184–185
pesticide management, 222–223
residue management, 69
water management, 125–126
reservoirs
irrigation regulating (552), 134
irrigation storage (436), 134–135
residue management
air quality effects, 29
carbon, 15–20
carbon:nitrogen stratification ratio, 20–21
crop yields, 21–22
definitions, 4–6
environmental outcomes, 29–31
global context, 7
history and background, 6–8
interactions and tradeoffs, 68
in irrigated agriculture, 139
pest management strategies, 24
for pesticide mitigation, 215–218
for pesticide risk mitigation, 249–250
research, 7–8, 69
scientific documentation, 31
soil erosion reduction, 10–15
soil organic matter, 15–20
soil quality effects, 8–10
water conservation effects, 28–29
water quality effects, 22–24
restoration/management of declining habitats (643), 275
ridge-till (329C), 4
riparian areas, environmental effects on, 170–171
riparian forest buffers (391)
air quality effects, 57
in combo with tree/shrub establishment, 274
definition, 48
environmental outcomes, 57–58
landscape management practice, 277–282
for pesticide mitigation, 218–219
scientific documentation, 58–59
soil quality effects, 55–57
water conservation effects, 57
water quality effects, 49–55
riparian herbaceous cover (390), 282–283
riparian practices, 277–283
rock barriers (555), 92–93
row arrangements (557)
for pesticide mitigation, 219–220
soil management practice, 63–64
water conservation effects, 119
water management practice, 119
water quality effects, 119
row crops, IPM for, 256–259
runoff
pesticide pollution pathway, 198
potential, 166
saline and sodic soil management (610)
air quality effects, 48
environmental outcomes, 48
irrigation water management (449), 139–140
reclamation, 45–47
scientific documentation, 48
soil management practice, 44–48
soil quality effects, 45–47
water conservation effects, 48
water quality effects, 47–48
scientific documentation
anionic polyacrylamide (PAM) erosion control (450), 44
conservation buffers, 58–59
conservation covers (327), 68
conservation crop rotation (328), 35
cover crops (340), 41–42
cropland conversion, 68
saline and sodic soil management (610), 48
value of residue management, 31
seasonal residue management (344)
definition, 5
for pesticide mitigation, 215–218
sediment basins (350)
landscape management practice, 292–293
for pesticide mitigation, 220
sediment control basins. see water and sediment control basins (638)
sedimentation, residue management effect on, 23
setbacks for pesticide management, 202–203, 205, 206
shallow water management for wildlife (646), 275
shelterbelt/windbreak establishment (380)
landscape management practice, 275–276
for pesticide mitigation, 209–210
wind erosion control practice, 60–62
shelterbelt/windbreak renovation (380) for pesticide mitigation, 209–210
shoreline/streambank protection (580), 288–290
shrub/tree establishment (612)
landscape management practice, 273–275
for pesticide mitigation, 207
sodic soil management. see saline and sodic soil management (610)
soil amendments, environmental effects of, 169–170
soil carryover as pesticide pollution pathway, 199
soil compaction, 26–31
soil erosion
irrigation-induced, 141–142
residue management effect, 10–15
soil management practices
anionic polyacrylamide erosion control (PAM), 42–44
categories of, 5
conservation buffers, 48–59
conservation covers (327), 64–68
conservation crop rotation (328), 31–35
contour farming (330), 63–64
contour orchard (331), 63–64
cover crops (340), 35–42
cropland conversion, 64–68
deep tillage (324), 26–31
mulching (484), 24–26
for nutrient management, 152
principles of, 3–4
residue management/conservation tillage, 4–24
row arrangements (557), 63–64
saline and sodic soil management (610), 44–48
soil compaction, 26–31
traffic control, 26–31
wind erosion control, 59–63
soil organic matter, residue management effect on, 8, 15–20
soil/plant assessment/management
environmental outcomes, 166–172
nutrient removal versus inputs, 164–166
soil/plant testing, 163–164
soil quality effects
agricultural mixing centers (702,703), 207
alley cropping (311), 207
anionic polyacrylamide (PAM) erosion control (450), 42–44, 207
bedding (310), 208
conservation buffers, 55–57
conservation covers (327), 66–67
conservation crop rotation (328), 31–34
constructed wetlands (656), 208
contour buffer strips (332), 208
contour farming (330), 208
cover crops (340), 37–39, 209
cropland conversion, 66–67
cross-wind ridges (589A), 209–210
cross-wind strip cropping (589B), 209–210
cross-wind trap strips (589C), 209–210
deep tillage (324), 210
drainage water management (554), 210–211
filter strips (393), 211
grassed waterways (412), 211
hedgerow planting (442), 209–210
herbaceous wind barriers (603), 209–210
irrigation land leveling (464), 213
irrigation tailwater recovery (447), 213–214
irrigation water management (449), 142, 214
mulching (484), 214
nutrient management (590), 215
ponds (378), 215
precision land forming (462), 213
residue management, 8–10, 215–218
riparian forest buffers (391), 219, 281
saline and sodic soil management (610), 45–47
seasonal residue management (344), 216–218
sediment basins (350), 220
strip cropping (585), 208, 220
subsurface drainage (606), 220
surface drains (607, 608), 221
surface roughening (609), 221
terraces (600), 221
tree/shrub establishment (612), 274
water management practices, 122–123
wetland creation (658), 208
wetland enhancement (659), 208
wetland restoration (657), 208
windbreak/shelterbelt establishment (380), 209–210
windbreak/shelterbelt renovation (650), 209–210
soybeans, IPM for, 258
specific ion effect, 139–140
spray drift, 198
sprinkler irrigation systems (442)
for pesticide mitigation, 206
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Abandonment</td>
<td>In agriculture, the practice of stopping the use of a piece of land to prevent degradation.</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Bank full</td>
<td>The highest point on a streambank or river bank.</td>
</tr>
<tr>
<td>Bankfull</td>
<td>The high bank of a stream or river. The bankfull is the highest point on the streambank.</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>C factor for USLE</td>
<td>In universal soil loss equation (USLE), the C factor represents the effect of residue management.</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Drainage</td>
<td>Systems designed to manage water movement.</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Economic feasibility analysis (EFAs)</td>
<td>A method to assess the economic viability of agricultural practices.</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Filter strips</td>
<td>Systems consisting of vegetation (trees, shrubs) or other barriers to reduce wind erosion and water loss.</td>
</tr>
<tr>
<td>Flatway</td>
<td>In construction, a level, horizontal course.</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Gully</td>
<td>A steeply-cut, narrow depression in the surface caused by running water.</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Habitat protection</td>
<td>Systems designed to protect beneficial species from habitat destruction.</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Irrigation</td>
<td>The practice of applying water to the land for the purpose of growing crops.</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Landscape management practices</td>
<td>Natural or artificial systems implemented to promote ecosystem health and reduce soil erosion.</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>K factor for USLE</td>
<td>In universal soil loss equation (USLE), the K factor represents the effect of water management practices.</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Leaching</td>
<td>The movement of water through soil or other sediments, resulting in nutrient leaching.</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mains/laterals</td>
<td>Systems consisting of vegetation (trees, shrubs) or other barriers to reduce wind erosion and water loss.</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Noise pollution</td>
<td>Airborne pollution that interferes with human auditory senses.</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Orchard</td>
<td>A plot of land where trees are planted for fruit or nut production.</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td>The ability of a material to allow water to pass through it.</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quality of the environment</td>
<td>The degree to which the environment meets or fulfills human needs and other conditions.</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Rainfall</td>
<td>The amount of water falling from the atmosphere.</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Streambank/shoreline protection</td>
<td>Systems designed to protect the shore or bank of a stream or river from erosion and damage.</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Tailwater recovery, irrigation (447)</td>
<td>The practice of collecting and using water that flows out of the end of a tile line or subsurface drainage.</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Upland wildlife habitat management</td>
<td>Systems designed to protect or restore wildlife habitat on upland areas.</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vegetation, permanent</td>
<td>Natural plant species that grow and spread continuously without human assistance.</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Waste storage facilities</td>
<td>Systems designed to store and manage waste products.</td>
</tr>
<tr>
<td>Waste utilization</td>
<td>Systems designed to manage waste products in a manner that reduces environmental impacts.</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Xeriscape</td>
<td>A landscape managed to reduce water use and conserve natural resources.</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td>The amount of a crop harvested from a field or piece of land.</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>
grade stabilization structures (410), 107
grassed waterways (412), 102–103
inter-row damming (640), 119–121
land smoothing (466), 119
lined waterways (468), 102–103
mole drains (482), 108–112
precision land forming (462), 119
residue management, 28–29
riparian forest buffers (391), 280–281
row arrangements (557), 119
saline and sodic soil management (610), 48
subsurface drainage (606), 108–112
surface drainage (607, 608), 118
terraces (600), 93–99
tile line drainage innovations, 117
tree/shrub establishment (612), 273–274
underground outlets (620), 107
vertical drains (630), 107
water and sediment outlets (638), 99–100
water control structures (587), 116
waterspreading (640), 119–121
water control structures (587)
for pesticide mitigation, 206
water management practice, 116
water management practices
see also irrigation water management (449)
air quality effects, 122
categories of, 91
diversions (362), 100–101
drainage water management (554), 112–116
filter strips (393), 103–106
grade stabilization structures (410), 106–107
grassed waterways (412), 101–103
hillside ditches (423), 101
increasing water storage and infiltration, 119–121
inter-row damming (640), 119–121
interactions and tradeoffs, 124
key factors of influence, 123–124
land smoothing (466), 118–119
lined waterways (468), 101–103
mole drains (482), 108–112
overland flow reduction, 92–121
precision land forming (462), 118–119
removal from soil, 107–117
removal from soil surface, 117–122
research priorities, 125–126
row arrangements (557), 119
soil quality effects, 122
subsurface drainage (606), 107–112
surface drainage, field ditches (607), 117–118
surface drainage, mains/laterals (608), 117–118
tile line drainage innovations, 116–117
underground outlets (620), 107
vertical drains (630), 107
waterspreading (640), 119–121
water quality effects
agrichemical mixing centers (702,703), 207
alley cropping (311), 207
anionic polyacrylamide (PAM) erosion control (450), 42–44, 207
bedding (310), 208
conservation buffers, 49–55
conservation crop rotation (328), 31–34
constructed wetlands (656), 208
tile line drainage innovations, 117
underground outlets (620), 107
vertical drains (630), 107
water and sediment control basins (638), 99–100
water control structures (587), 116
waterspreading (640), 119–121
wetland creation (658), 208
wetland enhancement (659), 208
wetland restoration (657), 208
windbreak/shelterbelt establishment (380), 209–210
windbreak/shelterbelt renovation (650), 209–210
water storage, 119–121
waterspreading (640)
 for pesticide mitigation, 206
 water management practice, 119–121
 water quality effects, 119–121
well decommissioning (351) for pesticide mitigation, 206
wetland creation (658)
 landscape management practice, 283–288
 for pesticide mitigation, 208
wetland enhancement (659)
 landscape management practice, 283–288
 for pesticide mitigation, 208
wetland practices, 283–288
wetland restoration (657)
 landscape management practice, 283–288
 for pesticide mitigation, 208
wetland wildlife habitat management (644), 275
wetlands, constructed (656)
 landscape management practice, 286–288
 for pesticide mitigation, 208
wheat, IPM for, 258–259
wildlife
 shallow water management for (646), 275
 terrestrial land management practices, 275
 upland habitat management (645), 275
 wetland habitat management (644), 275
Willamette River Basin case study, 303–305
Win-PST (Windows Pesticide Screening tool), 200
wind erosion control practices
 cross-wind ridges (589A), 62–63
 herbaceous wind barriers (603), 59–60
 soil management practice, 59–63
 surface roughening (609), 62–63
 tillage orientation, 62–63
 windbreak/shelterbelt establishment (380), 60–62
windbreak/shelterbelt establishment (380)
 landscape management practice, 275–276
 for pesticide mitigation, 209–210
 wind erosion control practice, 60–62
windbreak/shelterbelt renovation (650) for pesticide mitigation, 209–210
Windows Pesticide Screening tool (Win-PST), 200