Index

A — B

adaptive management
in ag landscapes, 3, 13, 51
for conservation programs, 149–152
overview, 6, 148–149
and policymakers, 21
and response timing, 146
state agency perspective, 180
using existing data, 152
agriculture
environmental impact of, 27
landscapes, 4
management, 18, 28–30
sustainability, 5
air quality benefit-cost analyses, 94
alternative futures, 135–136
animal feeding operations, concentrated, 178
antibiotic resistance, 5
applicant pool, 95, 98
aquatic communities, 121–122, 126
benefit-cost analyses, 22, 92, 94, 98, 99
best management practices
adoption of, 18–19
Chesapeake Bay Program, 163–169
P and sediment loads, 34, 36
wetland restoration, 31
bid-based payments, 99
bidding systems, 38, 98–101
biodiversity conservation, 78–79
biogeochemical processes, 11, 32, 33, 67–69, 70
biological contamination, 5
biophysical science
data dilemma, 52–53
disproportionality, 109
integration with social sciences, 17–20
in targeted management, 90–91
biotic response, 16
buffers
conservation, 73–76
riparian, 118–121, 128–129, 152
applying lessons, 165–167
background, 160–163
lessons learned, 163–165
managing nutrient discharge, 117
climate, 5, 13, 30, 119
concentrated animal feeding operations, 178
conceptual challenges, 7–9
conflicts, evaluating, 4
conservation buffers, 73–76
conservation dollars, 38
conservation effectiveness
at landscape-scale, 130–131, 134
monitoring, 145
Conservation Effects Assessment Project (CEAP)
and environmental management research, 30
goals of, 51
large-scale, long-term, 10
linkage to ecological context, 37
as monitoring model, 8
NRCS perspective, 181–182
social factor absent, 18–19
conservation efficiency, 75–76
conservation management and technological innovations, 53–54
conservation planning, cooperative, 7
conservation plans, execution of, 55–56
conservation practices
adoption by landowners, 38, 40, 105–107
agricultural pollution, 7
and biotic response, 16
significant unknowns, 153–155
conservation programs
adaptive management for, 149–152
benefit-cost analyses, 22
and ecosystem services, 13
enrollment, 92–95
landscape-scale, 8
public-funded, 7–8
Conservation Reserve Enhancement Program (CREP), 32
Conservation Reserve Program (CRP)
and bidding, 100–101
cornerstone policy, 122–123
cost-share program, 38
effects on wildlife and habitat, 127–128
and public benefit, 18
public-funded, 7–8
Conservation Security Program (CSP), 22, 38

(c) SWCS. For Individual Use Only.
conservation vs. restoration, 115–116
contaminants, 5, 124–126
contents approach, 6, 17–18
context approach, 6, 17–18
cooperative conservation planning, 7
cost-benefit analyses. see benefit-cost analyses
cost-effectiveness, 8, 81, 92
cost-share programs, 38
culture (social), 19
cumulative effects, 128–129

data coverage, 44, 51, 57–59
decision-making for effective restoration, 136–137
demography, 19
digital watershed, 11
disproportionality, 40–42, 104–110
drinking water, 5
DRIP syndrome, 53
ecohydrologic models, 11
ecological recovery, 129, 130
ecological restoration
 aquatic communities, 121–122
 cumulative effects, 128–129
 future directions, 131–137
 pollutants and wastes, 117–121
 response time, 123–128, 130–131
 riparian buffers, 118–121
 terrestrial wildlife, 122–123
 water chemistry, 117
 water temperature, 116–117
ecological systems interaction with social sciences, 18–20
economics
costs, 64
growth, 19
tools, 69, 72–73
values, 3–4, 16, 129, 134
ecoregions, 72
ecosystem services approach
 ag environmental performance, 7
 biologically-based, 11
 and information content, 21
 landscape-scale, 13
 overview, 3–4
 for planning, 10
 resonance with public, 16
ecosystems, 5, 7
environmental behavior, 105–107
environmental benefits, 16

Environmental Benefits Index (EBI), 94–95, 97–98, 100–101
environmental conservation, targeted, 65
environmental damage, quantification of, 4
environmental impacts of agriculture, 5, 9, 27
environmental interconnectedness, 10
environmental management, new approaches to, 30–37
Environmental Mapping and Analysis Program (EMAP), 10
environmental observations, 9–11
Environmental Quality Incentives Program (EQIP), 38, 100–101
Evoland, 136
experiments, 29, 119–120

farm policy, 31
farm-scale approaches, 18, 28–29, 132–133
farmers, stereotypical, 105–107
feedback loops, 31
field-scale approaches, 28–29
filter strips, 119
financial incentives, 38, 92, 97–98
flooding, 5
functional assessment techniques, 31–32, 33
funding, public, 7–8, 182
geographic scalability, 29–30
geomorphic data, 153
geospatial data, 42, 52–53, 68–69
geostatistical techniques, 153–154
goods and services, nonmarket, 3–4
gradient analysis, 153–154
Greencover Program, 8, 18
groundwater, 124–126
habitat. see also wildlife
 aquatic, 121–122, 126
 functional attribute, 33
 loss of, 5
 targeted management, 71–73, 74–76
 time lag in ecological response, 121–122, 126, 127–128
heterogeneity of landscapes, 27, 64
hierarchy, 6, 8, 17
historical trajectories, 6, 18, 135
human behavior, 37, 105–107
human health, 5
hydrology. see also water quality
 and climate effects, 119
functional attribute, 33
hydrologic observatories, 11
linking with biology, 10–12
sensitive areas, 76–77
timing of ecological response, 145
wetland restoration, 31–32, 33

Illinois Conservation Reserves Enhancement Program, 8
incentives, financial, 38, 92, 97–98
information exchange, 19
innovations for effective restoration, 132–133
knowledge exchange, 19
Lake Decatur, 173–175
land management, targeted. see targeted land management
land ownership, 129, 131–132
land retirement, 38
landscape-scale approaches
C sequestration, 38–40, 41
conservation effectiveness, 130–131, 134
disproportionalities, 40–42
integrated, 43
new approach, 29–30
nitrate management, 32–34, 35
P management, 34, 36
sediment loads, 34, 36
state agency perspective, 179
water quality, 38–40, 41
wildlife management, 36–37
landscapes
ag dependent on, 27–28
ecology, 4–6, 7, 8, 10, 72
heterogeneity, 27, 64
interconnectedness, 80
legacies, 6, 130
linking to streams, 70–71
management, 173–182
legacies, landscape, 6, 130
legislation, 65
level of payment, 92
linkages of trust, 70
long-term experiments
landscape-scale approach, 30
for model testing, 51
multi-year monitoring, 36
multiple-scale, 52–53
outcome assessment, 46
responses, 145
longevity of processes, 18
Longterm Ecological Research network (LTER), 12, 19
Management Systems Evaluation Areas (MSEA), 30
manures, 118
marketing, 16
measurements, 3, 9, 21. see also scale methodology, 42–46, 51
models
adoption of conservation practices, 39–40
Chesapeake Bay Program, 12–13
data coverage, 43–46
to define alternative futures, 135
ecohydrologic, 11
for environmental observations, 11–12
incorporating social science, 12
limitations of current, 51
multiple future scenarios, 151
new approaches, 52–53
optimization algorithms, 45–46
policy-relevant choices, 44–45
for prioritizing conservation programs, 8
quality of, 12
regional, 8–9
scale of, 13
uncertainty, 45
user specific, 57–59
water quality, 68–69
modifiable area unit problem, 6
monitoring
biogeochemical processes, 67–69
Chesapeake Bay Program, 12–13
conservation effectiveness, 145
content and context, 17–18
for effective restoration, 133
landscape ecological approaches, 4–6
long-term, 36, 146
for prioritizing conservation programs, 8
regional, 8–9
scale of, 13
and spatial location, 17
types of, 148–149
water quality, 36

(c) SWCS. For Individual Use Only.
N
National Agri-Environmental Health Analysis and Reporting Program (NAHARP), 10
National Ecological Observatory Network (NEON), 12
national park system, 65
National Water Quality Assessment program (NAWQA), 10
Natural Resources Conservation Service, 181–182
The Nature Conservancy (TNC), 78–79
nature preserves, 72
nitrates
local stakeholder's perspective, 173–174
management, 32–34, 35
time lag in ecological response, 124–126
nitrogen cycle, 136–137
nongovernmental organizations, 38
nonmarket goods and services, 3–4
nutrient management, 28, 30–31
nutrient responses, 124–126, 128–129
optimization algorithms, 45–46
outcome assessment, 46, 52–53

P
paired comparisons, 152
park system, national, 65
performance-based payments, 98–99, 102
perspectives
local stakeholder, 173–177
Natural Resources Conservation Service, 181–182
policymaker, 181–182
state agency, 178–180
pesticides, 118
pharmaceuticals, veterinary, 118
phosphorus
cycle, 145
ecological restoration, 117–118
management, 34, 36
soil-test as targeting criteria, 77–78
physical contamination, 5
pilot projects, 22
place-based approach, 9, 17
planning
for effective restoration, 134–136
for environmental observations, 9–10
local, 65
plot-based approaches, 28
policy

cumulative effects, 129
industrial vs. agricultural, 152
relevant choices for models, 44–45
in targeted management, 90–91
tools, 18
policymakers
educating, 16
perspectives of, 181–182
role in ecological response, 145
targeting water quality, 69
what can science provide, 21–23
politics, 19, 81
pollutants, 7, 64, 117–121
practice-based payments, 98, 102
precision of targeted management, 80
private benefits, 18
producer application, 93–94
public benefits, 18
public goods, 22
public perception, 21

R
regional-scale approaches, 8–9, 13, 134
regionalization, 32–37
regulation, 38
request for proposals (RFP), 93
research strategies. see also methodology
integrated, 19–20
new approaches, 30–37
traditional approaches, 28–30
Resilience Alliance, 19
restoration vs. conservation, 115–116
riparian buffers, 118–121, 128–129, 152
risk effects, 97
river navigation, 5
runoff, 10

S
sampling strategies, 9, 29, 56
scalability, geographic, 29–30
scale
compatibility, 43–44
in ecosystem analysis, 6
landscape, 13
in landscape ecology, 8
linking, 8
of measurements, 3
need for multiple, 52–53
public vs. private benefits, 18
regional, 8–9
scaling up or down, 54–55
of targeted management, 81
sediment loads, 34, 36, 173–174
sensor networks, 42–43, 52–53
social institutions, 19
social science
disproportionality, 109
incorporation in models, 12
integration with biophysical sciences, 17–20
interaction with ecological systems, 18–20
privacy issues, 9
in targeted management, 90–91
societal benefits, 7
socioeconomic component
data, 16, 52–53
integration with biophysical component, 37–42
new approaches, 30
and practice adoption, 97
of targeted management, 81
soil erosion, 5, 65, 94
soil fertility, 5
soil tests, 77–78
spatial arrangement, 5–6
spatial variance, 6, 17
spillovers, 18
state-and-transition, 80
State of the Nation’s Ecosystems, 53
streams, 70–71
surrogate indicators, 16
sustainability, 5
systems approaches, 30–33
systems orientation, 29

T

targeted land management
based on soil-test P, 77–78
biodiversity conservation, 78–79
case for, 64
challenges for future, 79–80
conservation buffers, 73–76
definition, 63–64
disproportionality, 109–110
evolving concept, 65–66
hydrologically sensitive areas, 76–77
policymaker’s perspective, 181–182
precision, 80
terrestrial habitat for wildlife, 71–72

water quality protection, 66–71
technology
changes in, 19
innovations, 53–54
targeted management, 67–69, 72
terrain indices, 42
thresholds, 80, 154
time lags, 118, 123–128
timeframes, 130–131, 146
tipping points, 18, 80
tradeoffs, 4, 22, 38, 99–100
trading programs, 38
trajectories
ecological restoration, 145
historical, 6, 18, 135
influencing, 146
trophic structures, 18

U – W

uncertainties, 45, 153–155
uniform payments, 38, 97–98
users, profiling, 57–59
variance, spatial, 6
veterinary pharmaceuticals, 118
volunteerism, 38
Walnut Creek monitoring project, 125–126
waste management systems, 132–133
water chemistry, 117
water quality. see also Chesapeake Bay Program
benefit-cost analyses, 94
and climate effects, 119
crises, 7
monitoring, 36
socioeconomic challenge, 38–40
targeted management, 65, 66–71, 73–74
temperature, 116–117, 124
water supply, 5
WATERS Network, 11
Watershed Evaluation of Beneficial Management
Practices (WEBs), 8
watersheds
digital, 11
integrated models, 43
management, 174–177
paired comparisons, 36
-scale approaches, 35, 130–131
wetlands, 65
restoration, 31–32, 33
wildlife management
benefit-cost analyses, 94
larger scale, 36–37
targeted management, 65, 122–123, 127–128
traditional approaches, 28–29
willingness to accept, 95–97, 98, 99, 102

winnowing, 92–95
Wisconsin Department of Natural Resources, 178–180
World Wildlife Fund (WWF), 78